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Micro-benchmarking

Precise measurement is essential for writing performance
sensitive code.

Objective: Measure the execution cost of functions that are
relatively cheap.

Functions with execution times on the order of nanoseconds to
a tens or hundreds of milli-seconds.
A 3.4 GHz cpu runs several simple instructions per nanosecond.
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Micro-benchmarking : Timing

let t1 = Time.now () in

f ();

let t2 = Time.now () in

report (t2 - t1)

Time.now is often too imprecise (about 1 microsec).

Asking for current time also takes time.
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Micro-benchmarking : Batch sizes

let t1 = Time.now () in

for i = 1 to batch_size do

f ();

done;

let t2 = Time.now () in

report batch_size (t2 - t1)

Compute a batch size to account for the timer.

Criterion for Haskell.

Mean, Std deviation to account for system noise.
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Micro-benchmarking : Noise

System noise from other processes and OS activity.

More importantly, there are delayed costs due to GC.

Variance in execution times is influenced by batch size.
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Core bench : Linear regression

Treats micro-benchmarking as a linear regression.
Simple case: fit of execution time to batch size.

Data of larger batch sizes have smaller %-error.
Geometric sampling of batch sizes to get a better linear fit.
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Core bench : Linear regression

No need to estimate the clock and other constant errors:

Constant overheads are accounted for in the y-intercept.

Predict other costs in the same way.

Estimate memory allocations and promotions using batch size.
Estimate garbage collection using batch size.

User specifies how much sampling time is allowed.

More data allows better estimates.
Error estimation, goodness of fit by

Bootstrapping
R2
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Example source (basic)

open Core.Std

open Core_bench.Std

let t1 = Bench.Test.create ~name:"id" (fun () -> ())

let t2 = Bench.Test.create ~name:"Time.now"

(fun () -> ignore (Time.now ()))

let t3 = Bench.Test.create ~name:"Array.create300"

(fun () -> ignore (Array.create ~len:300 0))

let () = Command.run (Bench.make_command [t1; t2; t3])

Output

Name Time/Run Minor Major

----------------- ---------- ------- -------

id 3.08

Time.now 843 2.00

Array.create300 3_971 301
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Some functions have strange execution times

let benchmark = Bench.Test.create ~name:"List.init"

(fun () -> ignore(List.init 100_000 ~f:id))
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Multiple predictors
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Multiple predictors: fit

Using runs, compactions, promoted as predictors

0

100

200

300

400

500

600

700

0 100 200 300 400 500

ru
n

ti
m

e
(m

s)

batch size

observed
1-predictor model
3-predictor model

Christopher S. Hardin and Roshan P. James Core bench: micro-benchmarking for OCaml



Overview
Implementation

Runtime cost decomposition example

X = [batch size x , minor GCs, compactions], y = runtime (ns).
Solve Xβ = y , xγ = X . Suppose we get

β =

1.06 × 104

1.04 × 106

2.25 × 106

 γ =
[
1 0.00299 0.00149

]
Then (predicted) runtime is

γβ = (1.06 × 104)(1)︸ ︷︷ ︸
nominal

+

ns/mGC︷ ︸︸ ︷
(1.04 × 106)

mGCs/run︷ ︸︸ ︷
(0.00299)︸ ︷︷ ︸

minor GC cost

+

ns/cmp︷ ︸︸ ︷
(2.25 × 106)

cmps/run︷ ︸︸ ︷
(0.00149)︸ ︷︷ ︸

compaction cost

= 10.6µs + 3.1µs + 3.4µs = 17.4µs

(Note: Just solving xm = y gives 17.4µs.)
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Conclusion and Future Work

opam install core bench

Expose more predictors

Measure the effect of live words on performance.
Counters for major collection work per minor GC.

Accuracy of results

Ordinary least-squares is susceptible to outliers. Incorporate
the fact that measurement error is heavy-tailed (on the
positive side).
Automatically select execution time based on error.

Automatically pick predictors from a set.
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Thank you.
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