
Runtime types in OCaml.

Grégoire Henry (Inria)
Jacques Garrigue (Nagoya University)

with support from LexiFi and OCamlPro

OCaml'2013 � September 24 � Boston

2/13

Dynamic typing in statically typed languages: what for ?

Structural type introspection e.g. generic Input/Output primitives:

I type-safe, unlike Marshal.{to,from}_string
I typed, i.e. not written in Camlp4

a.k.a. polytypic functions

Nominal type introspection e.g. dynamic values:

I dynamic key/value storage
I to implement a DSL with dynamic typing

or extensible polytypic functions (for abstract type)

A common type representation for:

I FFI libraries
I Eliom's services

Debugger explore the heap with (exact) typing information

3/13

Main problem

Is there a single representation that �ts all these usages ?

I while preserving abstraction when wished

I while breaking abstraction when wished (but not by mistake)

I without hidden cost

4/13

Small example: polytypic printing function

let rec print (type t) (ty: t ty) (v: t) =

match head ty with

| Int → print_int v

| String → print_string v

| List ty → print_list (print ty) v

| ...

| Sum desc →
let (name, args) = sum_get desc v in

print_string name;

if List.length args <> 0 then

printf "(%a)" print_args args

| ...

| Abstract → print_string "<abstract>"

and print_args = function

| [Dyn (ty, v)] → print ty v

| Dyn (ty, v) :: args →
print ty v; printf ","; print_args args

| [] → assert false

4/13

Small example: polytypic printing function

let rec print (type t) (ty: t ty) (v: t) =

match head ty with

| Int → print_int v

| String → print_string v

| List ty → print_list (print ty) v

| Sum desc →
let (name, args) = sum_get desc v in

print_string name;

if List.length args <> 0 then

printf "(%a)" print_args args

| ...

| ...

| Abstract → print_string "<abstract>"

and print_args = function

| [Dyn (ty, v)] → print ty v

| Dyn (ty, v) :: args →
print ty v; printf ","; print_args args

| [] → assert false

4/13

Small example: polytypic printing function

let rec print (type t) (ty: t ty) (v: t) =

match head ty with

| Int → print_int v

| String → print_string v

| List ty → print_list (print ty) v

| Sum desc →
let (name, args) = sum_get desc v in

print_string name;

if List.length args <> 0 then

printf "(%a)" print_args args

| ...

| Abstract → print_string "<abstract>"

and print_args = function

| [Dyn (ty, v)] → print ty v

| Dyn (ty, v) :: args →
print ty v; printf ","; print_args args

| [] → assert false

5/13

Using polytypic function: type expressions

A type for types: the prede�ned type τ ty;

An syntax for type expression: (type val τ) of type τ ty,
the runtime representation of τ .

type t = R of int * int | ...

let x = R (22, 7)

let () = print (type val t) x

6/13

Using polytypic function: implicit type arguments

Implicit type arguments: optional argument instantiated at call-site
with the dynamic representation of the expected type.

val print: ?t:(type val α) → α → string

let print ?(type val t) (v: t) = ...

type t = R of int * int | ...

let x = R (22, 7)

let () = print x (* implicit arg is (type val t) *)

7/13

Main problem, reformulated.

How to mix polytypic function and abstraction ?

I without always printing <abstract>

I and given that a data type may have multiple and distinct
abstract representation

module type INTF = sig type t ... end

module IMPLEM = struct type t = ... end

module M = (IMPLEM : INTF)

module M2 = (IMPLEM : INTF)

8/13

One solution: extensible polytypic function

module M : sig

type t

val x : t

end = struct

type t = R of int * int | ...

let x = R (22, 7)

let () = print x (* display: �R (22, 7)� *)

end

let () = print x (* display: �<opaque>� *)

(fun x → ...)

end

let () = print x (* display: �R (22, 7)� *)

May be implemented with type-indexed association table.

8/13

One solution: extensible polytypic function

module M : sig

type t

val x : t

end = struct

type t = R of int * int | ...

let x = R (22, 7)

let () = print x (* display: �R (22, 7)� *)

let () =

register_printer (external type val t)

(fun x → ...)

end

let () = print x (* display: �R (22, 7)� *)

May be implemented with type-indexed association table.

9/13

Abstract type and nominal type introspection (1/3)

Which relation between a data type and its abstraction(s) ?

module type INTF = sig

type t

val x : t

end

module IMPLEM = struct

type t = R of int * int | ...

let x = R (22, 7)

end

include (IMPLEM : INTF)

let cast ?(type val a) (x : a) : IMPLEM.t option =

match (type val a) with

| (type val IMPLEM.t) → Some (x : IMPLEM.t)

| _ → None

9/13

Abstract type and nominal type introspection (1/3)

Which relation between a data type and its abstraction(s) ?

module type INTF = sig

type t

val x : t

end

module IMPLEM = struct

type t = R of int * int | ...

let x = R (22, 7)

end

include (IMPLEM : INTF)

let cast ?(type val a) (x : a) : IMPLEM.t option =

match (type val a) with

| (type val IMPLEM.t) → Some (x : IMPLEM.t)

| _ → None

9/13

Abstract type and nominal type introspection (1/3)

Which relation between a data type and its abstraction(s) ?

module type INTF = sig

type t

val x : t

end

module IMPLEM = struct

type t = R of int * int | ...

let x = R (22, 7)

let is_t ?(type val a) (x : a) =

match (type val a) with

| (type val t) → true

| _ → false

end

include (IMPLEM : INTF)

10/13

Abstract type and nominal type introspection (2/3)

Alias type have no proper identity:

module M : sig

type t

val x : t

end = struct

type t = int list

let x = [1;2;3]

end

let cast ?(type val a) (x : a) : int list option =

match (type val a) with

| (type val int list) → Some (x : int list)

| _ → None

11/13

Abstract type and nominal type introspection: summary.

Global context There is a canonical name for type de�ned outside
of the current compilation unit: its absolute path.

Wish By default abstraction should consistently introduces
new nominal types. But, how to reference (all) the
external name(s) of a given type within its initial
compilation unit/structure ?

Pragmatic approach manual or semi-automatic creation of runtime
�type names�

I track nominal usage of type
I annotate signature accordingly

11/13

Abstract type and nominal type introspection: summary.

Global context There is a canonical name for type de�ned outside
of the current compilation unit: its absolute path.

Wish By default abstraction should consistently introduces
new nominal types. But, how to reference (all) the
external name(s) of a given type within its initial
compilation unit/structure ?

Pragmatic approach manual or semi-automatic creation of runtime
�type names�

I track nominal usage of type
I annotate signature accordingly

12/13

Behind the scene

An unsafe type for type

type uty =

| DT_Bool | DT_Int | DT_List of uty

...

| DT_Constr of declaration * uty list

| DT_Var of var_id

and declaration =

{ decl_id = id;

params = var_id list;

kind = kind; }

and kind = DT_Sum of ... | DT_Record of ...

Absolute path as type identi�ers

and id = string list * string

13/13

Conclusion: what's working ?

I Runtime type representation with global names

I A GADT for structural introspection

I Type-constructor indexed association table

I Implicit type argument
I lightweight syntax for calling polytypic function
I explicit type parameter for polymorphic function

